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Abstract
We describe inverse scattering for the matrix Schrödinger operator with general
self-adjoint boundary conditions at the origin using the Marchenko equation.
Our approach allows the recovery of the potential as well as the boundary
conditions. It is easily specialized to inverse scattering on star-shaped graphs
with boundary conditions at the node.

PACS numbers: 03.65.Nk, 02.30.Tb, 02.30.Zz

1. Introduction

The monograph by Agranovich and Marchenko [1] provides the description of the inverse
scattering problem for the matrix Schrödinger operator on the semi-axis with Dirichlet
boundary conditions at the origin. This followed pioneering work by Gelfand, Jost, Krein,
Levitan, Marchenko and other authors on the inverse problem. For a more complete description
of the history of this problem, see the series of papers by Faddeev [18, 19].

In this paper, we generalize the work of Agranovich and Marchenko. We consider the
matrix Schrödinger operator with general self-adjoint boundary conditions at the origin. As a
consequence the boundary conditions, in the form of a unitary matrix U, appear as a crucial
element in our discussion of the direct and inverse problems. In particular we see that the
scattering data, due to the continuous part of the spectrum, are of the form S(k) − Û where
S(k) is the scattering matrix and Û is a matrix directly related to the boundary conditions
(it is in fact the asymptotic value of the scattering matrix at high energy). From our discussion
of the inverse problem, it is easy to see that the boundary conditions U along with the potential
matrix are recovered in the course of the solution.

The consideration of general boundary conditions, instead of Dirichlet boundary
conditions, increases the complexity of the problem from an analytic and algebraic perspective.
From an analytic point of view, the characterization of the set of scattering data becomes
far more difficult. We are far from finding an equivalence between the set of permissible
matrix Schrödinger operators and a set of scattering data (on the other hand, a complete
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characterization is given in [1] for Dirichlet boundary conditions). In this paper, we have
concentrated mainly on the algebraic complications that arise in the consideration of general
boundary conditions.

There has been a lot of work on systems with singular or finite-rank perturbations
[3, 4, 31] and in particular they play an important role in the study of operators on graphs
[10–14, 16, 21, 22]. Such systems may be useful in modelling the behaviour of real physical
problems, in particular nanoelectronic devices [15, 17, 26, 28, 29, 25]. In these studies the
choice of finite-rank perturbation, or boundary condition, is an important part of the modelling
of the dynamical system. On the other hand, as far as this author is aware, no work has been
done on the inverse problem where the self-adjoint boundary conditions play a central role
and are recovered as part of the solution. It is for this reason we believe that this paper will be
of interest.

As mentioned above, many of the papers using finite-rank perturbations in applications
consider operators on graphs, rather than, as in our case, matrix systems. However, it is easy to
see that the matrix system is a generalization of the star-shaped graph which has an important,
even central, role in applications (see [30], where there is a discussion of modelling general
quantum networks using such a system).

There are many other approaches to the inverse problem aside from the approach we
have adopted here. There is an abundance of inverse spectral methods [5, 32, 33] and
the boundary control method [6–9] is another very useful approach. The boundary control
method is particularly powerful when applied to inverse problems on finite graphs as it allows
the recovery of the operator on the graph as well as the geometry of the graph [9]! The matrix
Schrödinger operator is easily seen to generalize the Schrödinger operator on a graph with n
rays and in [20, 27] the authors consider the inverse problem on graphs using similar methods
to the method used here (we note however that there are some errors in [20]; specifically, the
inverse problem is not correctly described).

The contents of this paper are based on the results of the PhD thesis [23].

2. The matrix Schrödinger operator with self-adjoint boundary conditions

Let us consider the Hilbert space L2(R+; C
n) consisting of the set of functions from

R+ ≡ [0,∞) to C
n satisfying

‖f ‖2 ≡
∫ ∞

0
|f (x)|2 dx < ∞

with associated inner product

〈f, g〉 =
∫ ∞

0
f (x)∗ · g(x) dx.

Here |·| is the usual norm in C
n and ·∗ denotes the complex conjugate transpose for vectors

and matrices.
We define the matrix Schrödinger operator

L0 ≡ − d2

dx2
+ Q(x),

where Q = Q∗ is a Hermitian matrix which is locally square integrable Q ∈ L2,loc and
satisfies ∫ ∞

0
(1 + t)|Q(t)| dt < ∞. (1)
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The norm, |A|, of a matrix acting on C
n is defined here as the maximal eigenvalue of the

matrix. The domain of L0 is chosen to be the set of smooth functions with the (closed) support
a compact subset of (0,∞)

Dom(L0) = C∞
0 (R+; C

n).

In this case L0 has deficiency indices (n, n)—we are in the limit point case—and the self-
adjoint extensions of L0 can be parametrized by an n × n unitary matrix U using Neumann
extension theory [2]. Here we take a slightly different but equivalent approach [22] whereby
the self-adjoint extensions are described by the boundary conditions at the origin

i

2
(U ∗ − I) · f

∣∣∣∣
0

+
1

2
(U ∗ + I) · fx

∣∣∣∣
0

= 0 (2)

for some unitary U which is fixed in the remainder of the discussion. The latin subscript
denotes differentiation.

In order to simplify the presentation we assume that there are no virtual levels—i.e. zero
is not an eigenvalue—of L.

3. Properties of the solutions

Here we consider solutions Y (x, k) of the eigenvalue equation

LY = k2Y (3)

for the most part ignoring boundary conditions (2) and square integrability. It is convenient to
define the involution

Y †(x, k) ≡ Y ∗(x, k̄)

as it is then clear that the Wronskian

W {�†, �} = �†�x − �†
x�,

of two solutions of (3) at the same value of k are constant (note the Wronskian as a function
of � and � is a matrix valued Hermitian symplectic form [22]. We also note that if we swop
the order W {�,�†} is not constant).

We define the standard solutions:

Theorem 3.1. There exist solutions, � and �, of the matrix equation (3) subject to the
condition (1) which satisfy the following boundary conditions at the origin:

limx→0 �(x, k) = 0, limx→0 �x(x, k) = I

limx→0 �(x, k) = I, limx→0 �x(x, k) = 0

and are entire functions in the variable k.

The proof of this theorem follows a standard argument (see theorem 1.2.1 of Agranovich and
Marchenko [1] for �, the discussion for � is similar [23]). We define the Jost solution using
the boundary condition at infinity

lim
x→∞ F(x, k) = eikx

I.

Theorem 3.2. The Jost solution F(x, k) and its derivative Fx(x, k) are analytic in the upper
half plane of the variable k and continuous there, up to and including the real axis.
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This too is a standard result (it is a slight extension of theorem 1.3.1 in [1], see [23] for details).
As a notational convenience we define

F±(x, k) ≡ F(x,±k).

Theorem 3.3. The Jost solution F+(x, k) can be written in terms of the transformation
operator

F+(x, k) = eikx
I +

∫ ∞

x

K(x, t) eikt dt (4)

with kernel K(x, t) which is bounded, absolutely integrable with respect to its second argument
and the derivative Kx(x, t) is also absolutely integrable with respect to its second argument.
The kernel and the potential matrix are related by

−2
dK(x, x)

dx
= Q(x). (5)

Again the proof may be found in [1], see mainly theorem 1.3.1.
Finally we would like to define the scattered waves. We first define the function �(x, k)

as the solution of (3) with boundary conditions

�|0 = 1

2
(U + I) ≡ A, �x |0 = i

2
(U − I) ≡ B. (6)

Here U is the fixed unitary matrix which defines the self-adjoint boundary conditions; A and
B are defined above as a convenient shorthand. It is easy to see that A∗B = B∗A from which
we immediately get that �(x, k) satisfies the self-adjoint boundary conditions (2). Clearly we
can write � in terms of the standard solutions

�(x, k) = �(x, k)A + �(x, k)B,

from which we see that � is entire in k, or in terms of the Jost solutions

�(x, k) = F−(x, k)M−(k) + F+(x, k)M+(k),

where M± are some functions of the spectral parameter. Taking the Wronskian

W
{
F

†
±, �

} = [
F

†
±�x − F

†
±,x�

]∣∣
0 = F†

±B − F†
±,xA

= ±2ikM±,

we get an expression for M± in terms of the Jost solutions. Here we use the constancy of the
Wronskian and the two expressions for � in turn. The functions

F±(k) = F±(0, k), F±,x(k) = F±,x(0, k)

are known as the Jost functions. This gives us

M± = ± 1

2ik

[
F†

±B − F†
±,xA

]
. (7)

Choosing appropriate U we can make � equal the standard solutions. This allows us to write
the standard solutions in terms of the Jost solutions. Evaluating at the origin we get the
following identities for the Jost functions:

F−F†
−,x − F+F†

+,x = 2ikI (8)

F+,xF†
+ − F−,xF†

− = 2ikI (9)
F−,xF†

−,x − F+,xF†
+,x = 0 (10)

F−F†
− − F+F†

+ = 0. (11)

Note, these are not Wronskian relations.
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Lemma 3.1. The matrix M (k) is invertable for finite real k.

Proof. We claim that for real k

M−L∗ + LM∗
− = I,

where L = F†
−,xB + F†

−A. Since k is real M∗
−(k) = M

†
−(k) and similarly L∗ = B∗F−,x +

A∗F− so the left-hand side becomes

− 1

2ik

[[
F†

−B − F†
−,xA

]
[B∗F−,x + A∗F−] +

[
F†

−,xB + F†
−A

]
[A∗F−,x − B∗F−]

]
.

Expanding this out and using AA∗ + BB∗ = I, AB∗ = BA∗ and the Wronskian relations we
immediately get the claimed equality.

Suppose there is a non-zero a ∈ ker(M−(k̂)) for some k̂ ∈ R. We have already shown
that

lim
k→k̂

[a∗M−(k)L∗(k)a + a∗L(k)M∗
−(k)a] = a∗a 	= 0,

which can only hold if L(k) has a pole at k̂. But this supplies a contradiction since, by
theorem 3.2, the elements of the matrix L are bounded continuous functions for real finite
values of k. �

This generalizes lemmata 2.2.2 and 2.4.1 of [1] where the result is proved for Dirichlet
boundary conditions, i.e. −2kM± = ±F†

±. Consequently, for real k we define the scattered
wave �(x, k) and scattering matrix S(k) in terms of �(x, k)

�(x, k) ≡ �(x, k)M−1
− (k) = F−(x, k) + F+(x, k)S(k),

where

S(k) = −[
F†

+B − F†
+,xA

][
F†

−B − F†
−,xA

]−1
. (12)

It is clear from the definition that the scattering matrix can be extended off the real axis as a
meromorphic function and we show that away from any poles

S† = S−1.

Taking the Wronskian of �† and �

W {�†, �} = A�B − B�A = 0,

we see that it is zero. Furthermore, where the inverse M−1
− exists we can write � in terms of

the scattering wave

W {�†, �} = M
†
−W {�†, �}M−

= 2ikM
†
−[−I + S†S]M− = 0

to get our result. In particular this gives the unitarity of the scattering matrix on the real
axis. The high energy behaviour of the scattering matrix is related to the self-adjoint boundary
conditions by the following lemma:

Lemma 3.2. Given the self-adjoint L with associated unitary matrix U defining the boundary
conditions, the scattering matrix has the asymptotic value

lim
k→∞

S(k) = Û ,

where Û is a unitary Hermitian matrix derived from U by applying the map

z 
→
{

1 : z ∈ T\{−1}
−1 : z = −1

to the spectrum of U.
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Here T is the unit circle in C. The proof follows from diagonalizing U and the asymptotics of
the Jost solutions.

Our assumption that there are no virtual levels gives a simple proof of the fact that there
are a finite number of discrete eigenvalues (see [1] p 38) although this statement is still true
when there are virtual levels (as may be proved using Glazman’s method of splitting, see [1]
theorem 2.1.1 for the Dirichlet case). Consequently, we have a finite number of negative (this
follows from the existence of an integral equation representation of the Jost solutions which
appears in the proof of theorem 3.2) discrete eigenvalues k2

l . We write kl = iκl and choose
the root κl > 0. The condition for a discrete eigenvalue is that, for some vector a, the square
integrable vector function F+(x, kl)a satisfies the self-adjoint boundary conditions (2)[

i

2
(U� − I)F+(kl) +

1

2
(U� + I)F+,x(kl)

]
a = 0.

This is equivalent to det
(
M

†
+(kl)

) = 0 and, since kl is purely imaginary and M
†
+(kl) = −M∗

−(kl)

we can write this as det(M−(kl)) = 0. This gives

Theorem 3.4. The discrete eigenvalues of the self-adjoint Schrödinger operator correspond
to the zeroes of

det(M−(k))

in the upper half plane.

Theorem 3.5. The poles of M−1
− (k) in the half-plane �(k) > 0 are simple.

We say that a matrix has a simple pole at kl if it can be expanded as a power series in k − kl

with the lowest order term (k − kl)
−1N−,l .

Proof. Let us consider the entire solution � of the eigenvalue equation (3) and the solution
�† of the ‘adjoint’ equation. We differentiate this adjoint equation with respect to k, multiply
on the right by �, and subtract from it (3) premultiplied by �

†
k . This gives

�
†
k�xx − �

†
xxk� = 2k�†�.

We integrate the space variable from x to N and put k = kl to get

a∗[�†
k�x − �

†
xk�

]
a
∣∣N
x

= 2kl

∫ N

x

[�a]∗�a dt, (13)

where a ∈ ker(M−(iκl)) is non-zero. Using the fact that a∗ eliminates M
†
+, a eliminates M−

and the constancy of the Wronskian the left-hand side simplifies to

a�M
†
−
[
F

†
−,kF+,x − F

†
−,xkF+

]
M+a

∣∣N
x
.

Since �(kl) > 0 all of the terms in the bracket are exponentially decreasing as N → ∞ so the
upper limit vanishes leaving

−a�M
†
−
[
F†

−,kF+,x − F†
−,xkF+

]
M+a = 2kl

∫ ∞

0
[�a]��a dt 	= 0.

We now expand out M+ in terms of Jost functions and use the identities (8)–(11) and M−a = 0
to get

ia�M
†
−M−,ka =

∫ ∞

0
[�a]��a dt 	= 0.
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Now it is well known that M−1
− (k) has a simple pole at k = kl iff the relations

M−(kl)a = 0 M−(kl)b + M−,k(kl)a = 0

for some b implies that a = 0. Premultiplying the second relation by a�M
†
− gives

a�M
†
−M−b + a�M

†
−M−,ka = 0

and it is easy to see that the first term is zero: we use (8)–(11) and the fact that a∗ eliminates
M

†
+. But this implies that a�M

†
−M−,ka = 0 which can only be true if a = 0. This implies that

the pole is simple. �

4. The inverse scattering problem

In this section, we derive the inverse scattering problem as an integral equation problem—
the Marchenko equation (a discussion using the Riemann Hilbert problem is given in [23]).
Our solution is to some degree formal; to treat this problem in its entirety we should first
give a complete description of the space in which the scattering data exist and then show
that the inverse scattering problem has a solution for any element of this space. A complete
description of the space of scattering data for the matrix Schrödinger operator with general
boundary conditions does not (to the knowledge of the author) exist. Indeed, this space would
almost certainly depend on the boundary condition U (or what seems likely Û ).

Nevertheless, given the condition (1) as well as the assumption of no virtual levels it is
possible to show that the (scattering) data S(k) − Û are the Fourier transform of a Hermitian
matrix with integrable entries. This important result follows from theorem E.0.3 of [23]. We
then have from theorem 3.4.1 of [1] that the Marchenko equation has a unique solution, again
with integrable entries. We simply assume here a very narrow class of operators (certainly
narrower than in [1]) but a class for which it is easy to show that the inverse problem has a
solution.

4.1. The Marchenko equation

The novel feature of the inverse problem for general boundary conditions is that the boundary
conditions appear in the scattering data and the inverse problem through Û . Using (4),
� − F+Û is seen to equal

� − F+Û = e−ikx
I + eikx(S − Û ) +

∫ ∞

x

K(x, t) e−ikt dt +
∫ ∞

x

K(x, t) eikt (S − Û ) dt.

As noted above the Fourier transform

Gc(y) ≡ 1

2π

∫ ∞

−∞
(S(k) − Û ) eiky dk

exists (in fact is Hermitian and integrable) so

1

2π

∫ ∞

−∞
(�(x, k) − F+(x, k)Û) eiky dk = Gc(x + y) + K(x, y) +

∫ ∞

x

K(x, t)Gc(t + y) dt,

(14)

where we will only consider x < y. The left-hand side is exponentially decreasing in the
upper half plane (since x < y) and therefore we can close the contour of integration there.
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Since, from theorem 3.5, the scattered wave has only simple poles at the eigenvalues there
appears a sum of residues on the left-hand side

1

2π

∫ ∞

−∞
(�(x, k) − F+(x, k)Û) eiky dk = 1

2π

∫ ∞

−∞
�(x, k)M−1

− eiky dk

= i
N∑

l=1

�(x, kl)N−,l eikly,

where N−,l is the residue of M−1
− at the eigenvalue k = kl . As F+ is analytic in the upper half

plane it makes no contribution.
To simplify the form of the residues we first need two auxiliary results. Defining Pl to be

the orthogonal projection onto ker M
†
+(kl) we have

�(x, kl)U
�(F+ − iF+,x)(kl)Pl = F+(x, kl)Pl. (15)

This just follows if we evaluate the left-hand side at x = 0, and the x derivative of the left-hand
side at x = 0 and see that we get the right-hand side and its x derivative at x = 0. The second
result

M−U�(F+ − iF+,x)(kl)Pl = 0 (16)

follows if we expand M− and use the left-hand side of (15), again evaluated at x = 0, to get
the Wronskian W {F †

−, F+} which is zero.
Let us consider the power series of M

†
+(kl) = −M∗

−(kl) and its inverse

M†
+(k) = M†

+(kl) + (k − kl)M
†
+,k(kl) + · · ·

M†−1
+ (k) = (k − kl)

−1N
†
+,l + O

†
+,l + · · · ,

where the subscript k denotes differentiation with respect to k and the subscript l is an index
of the zeros kl . These expansions give us the following relations:

M†
+(kl)N

†
+,l = N

†
+,lM

†
+(kl) = 0 (17)

M
†
+,k(kl)N

†
+,l + M†

+(kl)O
†
+,l = N

†
+,lM

†
+,k(kl) + O

†
+,lM

†
+(kl) = I. (18)

From (17) we have PlN
†
+,l = N

†
+,l or taking the complex conjugate transpose

N−,lPl = N−,l . (19)

We will now show that the left-hand side of (15) is ‘close to’ the residue, namely

U�(F+ − iF+,x)Pl = iN−,lAlPl, (20)

where Al is the positive definite Hermitian matrix

Al ≡
∫ ∞

0
F�

+F+(t, kl) dt.

To see this we take the left-hand side of (20), multiply on the left by the complex conjugate
transpose of equation (18), expand out and use (16), then M

†
+(kl)Pl = 0 to get

U�(F+ − iF+,x)Pl = − 1

2ikl

N−,l

[
F†

−,kF+,x − F†
−,xkF+

]
Pl.

Using the same reasoning as was used to derive (13), we see that the term in brackets
F†

−,kF+,x − F†
−,xkF+ = 2klAl which gives (20).

Going back to (15) we get

F+(x, kl)Pl = i�(x, kl)N−,lAlPl = i�(x, kl)N−,lBl,
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where Bl = PlAlPl + P ⊥
l and we have used (19). It is clear that Bl is positive definite so we

can define

Cl ≡ PlB
−1/2
l .

Then C2
l = PlB

−1
l from which we finally get the desired form for the residue

F+(x, kl)C
2
l = i�(x, kl)N−,l . (21)

The Cl are known as normalization matrices as the columns of F+(x, kl)Cl form a complete
set of normalized eigenfunctions (this is a simple consequence of the above, for details see
[1]). From (4) and (14) we immediately get the Marchenko equation (22).

Theorem 4.1. Given the scattering data

{S(k); κl, Cl, l = 1, . . . , N},
where S(k) is a unitary matrix, Cl are non-negative Hermitian matrices and κl are positive real
numbers we can recover the potential of the matrix Schrödinger operator from the solution of
the Marchenko equation

G(x + y) + K(x, y) +
∫ ∞

x

K(x, t)G(t + y) dt = 0 x < y, (22)

where

G(t) =
N∑

l=1

C2
l e−κl t +

1

2π

∫ ∞

−∞
(S(k) − Û ) eikt dk.

Here Û = limk→∞ S(k).

Proof. The potential is recovered from the solution of the Marchenko equation using (5). �

Corollary 4.1. Given the scattering data and the solution K(x, t) of the Marchenko equation,
we can recover the self-adjoint boundary conditions of the matrix Schrödinger operator from

U = (�|0 − i�x |0)(�|0 + i�x |0)−1.

Proof. This follows from (6). The scattered wave can be found from the scattering matrix
and (4). �

4.2. The diagonal potential

We finish with some brief comments on the case where Q(x) is a real diagonal matrix. This
is easily seen to be equivalent to the scattering problem for a star-shaped graph with a single
node and n semi-infinite rays. In this case we expect some simplification to occur:

Proposition 4.1. In the case of a diagonal potential the following scattering data are sufficient
to recover the potential:

{Ri(k); κl, γl,i , i = 1, . . . , n l = 1, . . . , N},
where Ri(k) ≡ Sii(k), known as the reflection coefficients, are the diagonal elements of the
scattering matrix and γl,i ≡ C2

l,ii are the diagonal elements of the squares of the normalization
matrices, known as the normalization constants.

Proof. In the case of a diagonal potential the kernel of the transformation operator K(x, t)

is, like the Jost solution F+, a diagonal matrix. Consequently the diagonal elements of the
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Marchenko equation (22) form n independent scalar Marchenko equations. It is easy to see
that these scalar Marchenko equations can be solved using only the above scattering data. �

There is good reason to expect that we can do better than this, but only if we are a priori
given the form of the self-adjoint boundary conditions at the origin. We discuss this point for
so-called flux conserved boundary conditions in the publication [24] and show there that it
is possible to recover the potential with only n − 1 reflection coefficients and normalization
constants.
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